UNIFACCAMP MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

Análise de Algoritmos e Complexidade da Computação

Lista de Exercícios 3

Prof. Osvaldo.

- 1. Sejam A, B e C conjuntos. Prove as seguintes propriedades
 - a) Distributiva: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
 - b) Morgan: $A \cup B = \overline{\overline{A} \cap \overline{B}}$.
- 2. Prove as seguintes propriedades lógicas:
 - a) Distributiva: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$;
 - b) Morgan: $x \vee y = \neg (\neg x \wedge \neg y)$.
- 3. Mostre que a classe de complexidade de problemas **P** é fechada para união, intersecção, complemento, concatenação e fecho de kleene. Isto é, se as linguagens L, L₁ e L₂ ∈ **P**, então:
 - a) $L_1 \cup L_2 \in \mathbf{P}$;
 - b) $L_1 \cap L_2 \in \mathbf{P}$;
 - c) $\overline{L} \in P$;
 - d) $L_1 . L_2 \in \mathbf{P}$;
 - e) $L^* \in \mathbf{P}$.
- 4. Mostre que a classe de complexidade de problemas \mathbf{NP} é fechada para união, intersecção, concatenação e fecho de Kleene. Isto é, se as linguagens L, L_1 e $L_2 \in \mathbf{NP}$, então:
 - a) $L_1 \cup L_2 \in \mathbf{NP}$;
 - b) $L_1 \cap L_2 \in \mathbf{NP}$;
 - c) $L_1 . L_2 \in \mathbf{NP};$
 - d) $L^* \in \mathbf{NP}$.
- 5. Mostre que as seguintes linguagens pertencem a NP.
 - a) L_{CICLO HAM} = { #grafo G# | existe um ciclo hamiltoniano no grafo G };
 - b) L_{3-COLORING} = { #grafo G# | G admite uma coloração válida com três cores };
 - c) $L_{SUBSET-SUM} = \{ \#S\#k\# \mid \text{ existe subconjunto S' de S tal que a soma dos elementos de S' seja igual a <math>k \};$
- 6. Mostre que $P \subset \text{co-NP}$.
- 7. Mostre que se $NP \neq co-NP$ então $P \neq NP$.

- 8. Mostre que a relação \leq_p é uma relação transitiva entre linguagens. Isto é, $L_1 \leq_p L_2$ e $L_2 \leq_p L_3$ então $L_1 \leq_p L_3$.
- 9. Mostre que $L \leq_p \overline{L}$ se e somente se $\overline{L} \leq_p L$.
- 10. Mostre que qualquer linguagem em NP pode ser decidida por um algoritmo em um tempo $2^{O(n^k)}$, para alguma constante k>0.
- 11. O professor José Sabido mostrou que um problema de decisão (linguagem) L pode ser reduzido em tempo polinomial a um problema (linguagem) NP-completo M. Além disso, após 80 páginas de matemática complicada, ele mostrou que L pode ser resolvido em tempo polinomial. Ele acabou de mostrar que **P** = **NP**? Por que?
- 12. O professor José Sabido acaba de projetar um algoritmo que recebe um grafo G com n vértices e determina em tempo $O(n^c)$, c > 0, se G contém uma clique de tamanho igual a k. O professor José Sabido merece o Prêmio Turing da ACM (http://en.wikipedia.org/wiki/Turing_Award) por ter acabado de mostrar que P = NP? Por que?
- 13. Mostre que toda linguagem L em **P** pode ser reduzida em tempo polinomial à linguagem $M = \{ \#y\# \mid y = 5 \}$, linguagem correspondente ao problema de decisão que determina se y = 5. Verifique também que uma linguagem L em **P** não pode ser reduzida à linguagem \emptyset e também à linguagem Σ^* .
- 14. Admitindo que L_{PARTICÃO} ∈ NP-completo, mostre que L_{SUBSET-SUM} ∈ NP-completo.
- 15. Admitindo que $L_{SUBSET-SUM} \in \mathbf{NP\text{-}completo}$, mostre que $L_{MOCHILA} \in \mathbf{NP\text{-}completo}$.